Building a Plain Seq2Seq Model for Language Translation


import random

import os

import re

import unicodedata

import zipfile

 

import requests

import torch

import torch.nn as nn

import torch.optim as optim

import tokenizers

import tqdm

 

 

#

# Data preparation

#

 

# Download dataset provided by Anki: https://www.manythings.org/anki/ with requests

if not os.path.exists(“fra-eng.zip”):

    url = “http://storage.googleapis.com/download.tensorflow.org/data/fra-eng.zip”

    response = requests.get(url)

    with open(“fra-eng.zip”, “wb”) as f:

        f.write(response.content)

 

# Normalize text

# each line of the file is in the format “\t

# We convert text to lowercasee, normalize unicode (UFKC)

def normalize(line):

    “”“Normalize a line of text and split into two at the tab character”“”

    line = unicodedata.normalize(“NFKC”, line.strip().lower())

    eng, fra = line.split(“\t”)

    return eng.lower().strip(), fra.lower().strip()

 

text_pairs = []

with zipfile.ZipFile(“fra-eng.zip”, “r”) as zip_ref:

    for line in zip_ref.read(“fra.txt”).decode(“utf-8”).splitlines():

        eng, fra = normalize(line)

        text_pairs.append((eng, fra))

 

#

# Tokenization with BPE

#

 

if os.path.exists(“en_tokenizer.json”) and os.path.exists(“fr_tokenizer.json”):

    en_tokenizer = tokenizers.Tokenizer.from_file(“en_tokenizer.json”)

    fr_tokenizer = tokenizers.Tokenizer.from_file(“fr_tokenizer.json”)

else:

    en_tokenizer = tokenizers.Tokenizer(tokenizers.models.BPE())

    fr_tokenizer = tokenizers.Tokenizer(tokenizers.models.BPE())

 

    # Configure pre-tokenizer to split on whitespace and punctuation, add space at beginning of the sentence

    en_tokenizer.pre_tokenizer = tokenizers.pre_tokenizers.ByteLevel(add_prefix_space=True)

    fr_tokenizer.pre_tokenizer = tokenizers.pre_tokenizers.ByteLevel(add_prefix_space=True)

 

    # Configure decoder: So that word boundary symbol “Ġ” will be removed

    en_tokenizer.decoder = tokenizers.decoders.ByteLevel()

    fr_tokenizer.decoder = tokenizers.decoders.ByteLevel()

 

    # Train BPE for English and French using the same trainer

    VOCAB_SIZE = 8000

    trainer = tokenizers.trainers.BpeTrainer(

        vocab_size=VOCAB_SIZE,

        special_tokens=[“[start]”, “[end]”, “[pad]”],

        show_progress=True

    )

    en_tokenizer.train_from_iterator([x[0] for x in text_pairs], trainer=trainer)

    fr_tokenizer.train_from_iterator([x[1] for x in text_pairs], trainer=trainer)

 

    en_tokenizer.enable_padding(pad_id=en_tokenizer.token_to_id(“[pad]”), pad_token=“[pad]”)

    fr_tokenizer.enable_padding(pad_id=fr_tokenizer.token_to_id(“[pad]”), pad_token=“[pad]”)

 

    # Save the trained tokenizers

    en_tokenizer.save(“en_tokenizer.json”, pretty=True)

    fr_tokenizer.save(“fr_tokenizer.json”, pretty=True)

 

# Test the tokenizer

print(“Sample tokenization:”)

en_sample, fr_sample = random.choice(text_pairs)

encoded = en_tokenizer.encode(en_sample)

print(f“Original: {en_sample}”)

print(f“Tokens: {encoded.tokens}”)

print(f“IDs: {encoded.ids}”)

print(f“Decoded: {en_tokenizer.decode(encoded.ids)}”)

print()

 

encoded = fr_tokenizer.encode(“[start] “ + fr_sample + ” [end]”)

print(f“Original: {fr_sample}”)

print(f“Tokens: {encoded.tokens}”)

print(f“IDs: {encoded.ids}”)

print(f“Decoded: {fr_tokenizer.decode(encoded.ids)}”)

print()

 

#

# Create PyTorch dataset for the BPE-encoded translation pairs

#

 

class TranslationDataset(torch.utils.data.Dataset):

    def __init__(self, text_pairs, en_tokenizer, fr_tokenizer):

        self.text_pairs = text_pairs

        self.en_tokenizer = en_tokenizer

        self.fr_tokenizer = fr_tokenizer

 

    def __len__(self):

        return len(self.text_pairs)

 

    def __getitem__(self, idx):

        eng, fra = self.text_pairs[idx]

        return eng, “[start] “ + fra + ” [end]”

        en_tokenized = self.en_tokenizer.encode(eng)

        fr_tokenized = self.fr_tokenizer.encode(“[start] “ + fra + ” [end]”)

        return en_tokenized.ids, fr_tokenized.ids

 

 

def collate_fn(batch):

    en_str, fr_str = zip(*batch)

    en_enc = en_tokenizer.encode_batch(en_str, add_special_tokens=True)

    fr_enc = fr_tokenizer.encode_batch(fr_str, add_special_tokens=True)

    en_ids = [enc.ids for enc in en_enc]

    fr_ids = [enc.ids for enc in fr_enc]

    return torch.tensor(en_ids), torch.tensor(fr_ids)

 

 

BATCH_SIZE = 32

dataset = TranslationDataset(text_pairs, en_tokenizer, fr_tokenizer)

dataloader = torch.utils.data.DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_fn)

 

# Test the dataset

for en_ids, fr_ids in dataloader:

    print(f“English: {en_ids}”)

    print(f“French: {fr_ids}”)

    break

 

#

# Create LSTM seq2seq model for translation

#

 

class EncoderLSTM(nn.Module):

    “”“A stacked LSTM encoder with an embedding layer”“”

    def __init__(self, vocab_size, embedding_dim, hidden_dim, num_layers=1, dropout=0.1):

        “”

        Plain LSTM is used. No bidirectional LSTM.

 

        Args:

            vocab_size: The size of the input vocabulary

            embedding_dim: The dimension of the embedding vector

            hidden_dim: The dimension of the hidden state

            num_layers: The number of recurrent layers (layers of stacked LSTM)

            dropout: The dropout rate, applied to all LSTM layers except the last one

        ““”

        super().__init__()

        self.vocab_size = vocab_size

        self.embedding_dim = embedding_dim

        self.hidden_dim = hidden_dim

        self.num_layers = num_layers

 

        self.embedding = nn.Embedding(vocab_size, embedding_dim)

        self.lstm = nn.LSTM(embedding_dim, hidden_dim, num_layers,

                            batch_first=True, dropout=dropout if num_layers > 1 else 0)

 

    def forward(self, input_seq):

        # input seq = [batch_size, seq_len] -> embedded = [batch_size, seq_len, embedding_dim]

        embedded = self.embedding(input_seq)

        # outputs = [batch_size, seq_len, embedding_dim]

        # hidden = cell = [n_layers, batch_size, hidden_dim]

        outputs, (hidden, cell) = self.lstm(embedded)

        return outputs, hidden, cell

 

 

class DecoderLSTM(nn.Module):

    def __init__(self, vocab_size, embedding_dim, hidden_dim, num_layers=1, dropout=0.1):

        super().__init__()

        self.vocab_size = vocab_size

        self.embedding_dim = embedding_dim

        self.hidden_dim = hidden_dim

        self.num_layers = num_layers

 

        self.embedding = nn.Embedding(vocab_size, embedding_dim)

        self.lstm = nn.LSTM(embedding_dim, hidden_dim, num_layers,

                            batch_first=True, dropout=dropout if num_layers > 1 else 0)

        self.out = nn.Linear(embedding_dim, vocab_size)

 

    def forward(self, input_seq, hidden, cell):

        # input seq = [batch_size, seq_len] -> embedded = [batch_size, seq_len, embedding_dim]

        # hidden = cell = [n_layers, batch_size, hidden_dim]

        embedded = self.embedding(input_seq)

        # output = [batch_size, seq_len, embedding_dim]

        output, (hidden, cell) = self.lstm(embedded, (hidden, cell))

        prediction = self.out(output)

        return prediction, hidden, cell

 

 

class Seq2SeqLSTM(nn.Module):

    def __init__(self, encoder, decoder):

        super().__init__()

        self.encoder = encoder

        self.decoder = decoder

 

    def forward(self, input_seq, target_seq):

        “”“Given the partial target sequence, predict the next token”“”

        # input seq = [batch_size, seq_len]

        # target seq = [batch_size, seq_len]

        batch_size, target_len = target_seq.shape

        device = target_seq.device

        # buffer for storing the outputs

        outputs = torch.zeros(batch_size, target_len, self.decoder.vocab_size, device=device)

        # encoder forward pass

        _enc_out, hidden, cell = self.encoder(input_seq)

        dec_in = target_seq[:, :1]

        # decoder forward pass: Store as output 1 onward

        for t in range(1, target_len):

            # last target token and hidden states -> next token

            pred, hidden, cell = self.decoder(dec_in, hidden, cell)

            # store the prediction

            pred = pred[:, 1, :]

            outputs[:, t] = pred

            # use the predicted token as the next input

            dec_in = torch.cat([dec_in, pred.argmax(dim=1).unsqueeze(1)], dim=1)

        return outputs

 

 

# Initialize model parameters

device = torch.device(‘cuda’ if torch.cuda.is_available() else ‘cpu’)

enc_vocab = len(en_tokenizer.get_vocab())

dec_vocab = len(fr_tokenizer.get_vocab())

emb_dim = 256

hidden_dim = 256

num_layers = 2

dropout = 0.1

 

# Create model

encoder = EncoderLSTM(enc_vocab, emb_dim, hidden_dim, num_layers, dropout).to(device)

decoder = DecoderLSTM(dec_vocab, emb_dim, hidden_dim, num_layers, dropout).to(device)

model = Seq2SeqLSTM(encoder, decoder).to(device)

print(model)

 

print(“Model created with:”)

print(f”  Input vocabulary size: {enc_vocab}”)

print(f”  Output vocabulary size: {dec_vocab}”)

print(f”  Embedding dimension: {emb_dim}”)

print(f”  Hidden dimension: {hidden_dim}”)

print(f”  Number of layers: {num_layers}”)

print(f”  Dropout: {dropout}”)

print(f”  Total parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad)}”)

 

# Train unless model.pth exists

if os.path.exists(“seq2seq.pth”):

    model.load_state_dict(torch.load(“seq2seq.pth”))

else:

    optimizer = optim.Adam(model.parameters(), lr=0.001)

    loss_fn = nn.CrossEntropyLoss(ignore_index=fr_tokenizer.token_to_id(“[pad]”))

    N_EPOCHS = 30

    CLIP_NORM = None

 

    for epoch in range(N_EPOCHS):

        model.train()

        epoch_loss = 0

        for en_ids, fr_ids in tqdm.tqdm(dataloader, desc=“Training”):

            # Move the “sentences” to device

            en_ids = en_ids.to(device)

            fr_ids = fr_ids.to(device)

            # zero the grad, then forward pass

            optimizer.zero_grad()

            outputs = model(en_ids, fr_ids)

            # compute the loss: compare 3D logits to 2D targets

            loss = loss_fn(outputs[1:].view(1, outputs.shape[1]), fr_ids[1:].view(1))

            loss.backward()

            if CLIP_NORM:

                torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_NORM)

            optimizer.step()

            epoch_loss += loss.item()

        print(f“Epoch {epoch+1}/{N_EPOCHS}; Avg loss {epoch_loss/len(dataloader)}; Latest loss {loss.item()}”)

        torch.save(model.state_dict(), f“seq2seq-epoch-{epoch+1}.pth”)

        # Test

        if (epoch+1) % 5 != 0:

            continue

        model.eval()

        epoch_loss = 0

        with torch.no_grad():

            for en_ids, fr_ids in tqdm.tqdm(dataloader, desc=“Evaluating”):

                en_ids = en_ids.to(device)

                fr_ids = fr_ids.to(device)

                outputs = model(en_ids, fr_ids)

                loss = loss_fn(outputs[1:].view(1, outputs.shape[1]), fr_ids[1:].view(1))

                epoch_loss += loss.item()

        print(f“Eval loss: {epoch_loss/len(dataloader)}”)

 

    # Save the final model

    torch.save(model.state_dict(), “seq2seq.pth”)

 

# Test for a few samples

model.eval()

N_SAMPLES = 5

MAX_LEN = 60

with torch.no_grad():

    start_token = torch.tensor([fr_tokenizer.token_to_id(“[start]”)]).to(device)

    for en, true_fr in random.sample(dataset.text_pairs, N_SAMPLES):

        en_ids = torch.tensor(en_tokenizer.encode(en).ids).unsqueeze(0).to(device)

        _output, hidden, cell = model.encoder(en_ids)

        pred_ids = [start_token]

        for _ in range(MAX_LEN):

            decoder_input = torch.tensor(pred_ids).unsqueeze(0).to(device)

            output, hidden, cell = model.decoder(decoder_input, hidden, cell)

            output = output[:, 1, :].argmax(dim=1)

            pred_ids.append(output.item())

            # early stop if the predicted token is the end token

            if pred_ids[1] == fr_tokenizer.token_to_id(“[end]”):

                break

        # Decode the predicted IDs

        pred_fr = fr_tokenizer.decode(pred_ids)

        print(f“English: {en}”)

        print(f“French: {true_fr}”)

        print(f“Predicted: {pred_fr}”)

        print()


Leave a Comment